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Turbulent oscillating flows in smooth tubes are considered. A group of flows in which the logarithmic
boundary layer grows monotonically with time is distinguished; the conditions of quasistationarity of
these flows are determined. A model of a quasistationary turbulent oscillating flow in a smooth tube
is constructed; the model is in satisfactory agreement with experiment.

Turbulent oscillating flows in smooth tubes were the subject of a number of studies [1−7]. Among the
works considered, of greatest interest are [3, 6], in which flows with a logarithmic boundary layer, whose
thickness δ grows monotonically with time until the layer occupies the entire cross section of the tube, are
studied. The velocity maximum, until the logarithmic layer reaches the channel axis, is observed at a distance
y = δ, and it is markedly higher than on the tube axis where the velocity changes according to the law U0 =
U0m sin ωt.

Integral relations for nonstationary boundary layers can be derived from the boundary-layer equations
using the same technique as for stationary ones. The solution of them is given in [2]. Another technique [7]
is approximate integration of the boundary-layer equations. In this case, one has to introduce the assumption
of the constancy of the coefficient of eddy viscosity with time, which obviously does not correspond to the
experiment.

In the work, an attempt is made to determine conditions under which the mentioned flow is realized
and to suggest the corresponding model.

In harmonic oscillations of a plate in its Stokes plane, the Stokes wave propagates into the depth of
liquid [8] with a velocity v = dy ⁄ dt determined by the formula

dy
dt

 = √2νω . (1)

In the case of a turbulized medium we can expect

dy
dt

 = √2 (ν + νt) ω . (2)

Usually νt >> ν; therefore the velocity of the wave will be determined mainly by the eddy viscosity. In the
near-wall region, νt = κyv∗  [8].

We assume that the tangential stress on the wall changes according to the harmonic law τw = τw0 sin
(ωt + φ), and after integration of (2) we obtain
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Since near the wall the behavior of flows is the same for both the plane and three-dimensional cases,
Eqs. (1)−(3) can be used for describing a tube flow.

According to [6], for large Reynolds numbers φ ≈ 0.1308. For the flow to be quasistationary, the
equality δ ⁄ R ≈ 1 must be reached at earlier stages of acceleration.

Figure 1 presents the dependences of δ ⁄ R on the phase of oscillation for the parameters of the setup
[6]. The points indicate the corresponding experimental data [6]. It is seen that relation (3) is in qualitative
agreement with the experiment [6].

As is known, turbulent flows are dissipative; therefore, a constant supply of energy is needed to
maintain turbulence. At the same time, owing to the turbulent motion, diffusion of particles and their kinetic
energy occur. The steady state is observed in the case of equilibrium between the supplied energy (turbulence
generation) and the diffusion and dissipation of turbulence energy. In the unsteady state, this equilibrium is
not observed and any excess of energy must be equal to a change in the turbulence energy [9].

If the flow is bounded by solid walls (the flow velocity on the walls vanishes), then in integration
over the entire region of flow all terms expressing turbulent and molecular diffusion disappear. We restrict
ourselves to plane thin-layer flows. Then we can write
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(4)

where q2 = u′2

___
 + v′2

__
 + w′2

___
. The left-hand side of (4) has the rate of change of the kinetic energy. The first

term on the right-hand side is the rate of generation of the turbulence energy, and the second is the turbulent
part of dissipation. Here it is taken that the molecular dissipation is much smaller than the turbulent dissipa-
tion. In an oscillating flow we can take D ⁄ Dt = ∂ ⁄ ∂t. We introduce the notation
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Fig. 1. Dependence of the ratio of the boundary-layer thickness to the
tube radius on the phase of oscillation: 1) experimental data of [6]; 2)
theory according to [6]. ωt, deg.
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then (4) takes the form

∂E

∂t
 = P − [εt] .

(6)

The values of P and [εt] in stationary flows must be equal; therefore the ratio (∂E ⁄ ∂t)/P is the meas-
ure of nonstationarity of the considered flow.

Figure 2 presents the results of numerical integration of the data of [6] by expression (5). The same
figure gives the values of ∂E ⁄ ∂t. It is seen that the maximum of P falls at the phase of 75o. The kinetic
energy of turbulence E at the stage of acceleration has a tendency to decrease (negative values of ∂E ⁄ ∂t), and
beginning from ωt = 90o to increase. Except for extreme points (ωt ≈ 0o and ωt ≈ 165o), the value of ∂E ⁄ ∂t
is much smaller than P. This indicates that change in the kinetic energy of turbulence in oscillating flows
does not contribute markedly to the energy balance.

We consider the energy equation [9]

εt = − u′v′
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To reduce it to an integrable form, we must express all terms of this equation in terms of the tangential stress
τ:
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In stationary flows, we have 3B1 ≈ − 2A and A = 1 ⁄ κ. Then Eq. (7) takes the form
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(9)

Equation (9) has the advantage that the eddy viscosity does not appear in it explicitly.
To construct the model corresponding to the experiments of [6] (curve in Fig. 1), it is worthwhile to

divide the flow into two regions: the near-wall region (0 < y < δ) and the core (δ < y < R).

Fig. 2. Dependence of the turbulence-energy generation (1) and the
change in the kinetic energy of turbulence (2) on the time from the data
of [6]. P, ∂E ⁄ ∂t, J/sec.
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We consider the near-wall region, which, in turn, can be divided into two stages: acceleration and
retardation. In the stage of acceleration, the maximum of velocity Um is observed at a distance y = δ from
the wall rather than on the tube axis; in this case Um > U0. Since at the point of velocity maximum the tan-
gential stress vanishes, there is good reason to believe that, similarly to stationary flows [9],

dτ
dy

 = 
dp
dx

 ,
(10)

whence

τ = τw + 
dp
dx

 y , (11)

where dp ⁄ dx = − ρωU0m cos ωt.
At the distance δ from the wall the tangential stress τ must vanish. However, calculation of δ in

accordance with (11) gives substantially underestimated values, as compared to experiment although the linear
character of change of τ = τ(y) remains. Therefore, in the stage of acceleration, instead of dp ⁄ dx in (11) we
should take the parameter α, calculated proceeding from the condition τ = 0, must be taken for y = δ:

τ = τw − αy ,   α = τw
 ⁄ δ . (12)

We substitute (12) into (9) and integrate

U

v∗  = (2A + 3B1) (1 − y ⁄ δ)1
 ⁄ 2 + A ln 





1 − √ 1 − y ⁄ δ

1 + √ 1 − y ⁄ δ




 + C . (13)

Since for y ⁄ δ = 1 the first and second terms on the right-hand side vanish, we must have Um
 ⁄ v∗  = C. To

determine C, we take into account the fact that for small y ⁄ δ expression (13) must coincide with the logarith-
mic law obtained for an equilibrium turbulent boundary layer. Since at the point y1 = ν ⁄ v∗ , ln (v∗ y1

 ⁄ ν) van-
ishes, we have

C = Atheor ln 




δv∗

ν




 + B − (2 − ln 4) Atheor − 3B1 . (14)

In the retardation stage, including ωt = 90o, the tangential stress has a more complex dependence on
ξ = y ⁄ δ than (11). We express it in the form of a polynomial which allows for the effect of the positive
gradient of pressure. The necessary conditions have the form [10]

τ = τw ,   ξ = 0 ;   τ D τw (1 + Λξ) ,   ξ → 0 ;   τ = 0 ,   ∂τ ⁄ ∂ξ = 0 ,   ξ = 1 , (15)

where Λ = (δ ⁄ τw)(dp ⁄ dx).
The cubic parabola

τ = τw (1 − 3ξ2 + 2ξ3 + Λξ (1 − ξ)2) ,   Λ = − 
ρδω U0m cos ωt

τw
 . (16)

satisfies conditions (15). Substitution of (16) into (9) and integration allow one to obtain the following ex-
pression for the velocity in the retardation stage:

707



U

v∗  = Atheor 






  ∫ 

y1
 ⁄ δ

1

 
√ (1 − 3ξ2 + 2ξ3) + Λ1ξ (1 − ξ2 )

ξ
 dξ







 + 3B1 + B , (17)

where y1 = ν ⁄ v∗ .
To compare the results of (13), (14), and (17) we proceed as follows. We calculate experimental val-

ues of Aexp from the data of [6] (this is admitted since experimental profiles obey with good accuracy, the
logarithmic law; where A = Aexp, which differs from the universal law, here A = 2.5, but with a constant
value B = 1.5). Assuming that the maximum theoretical and experimental values of the velocity Um must
coincide, we calculate Atheor. Results of the calculation of Atheor are shown in Fig. 3 by a solid line; points
correspond to Aexp. Good qualitative agreement of the results is seen. Quantitative divergences for ωt < 135o

lie within 20%. With increase in the phase, in the subsequent phase of retardation (ωt > 135o), the diver-
gences between theory and experiment begin to increase, which is caused by the inadequacy of the boundary
condition τ � τw(1 + Λξ) to the actual behavior of the tangential stress near the wall [11].

We find the velocity in the flow core, for which purpose we again use its representation in the form
of a polynomial. The set of conditions has the form

U = Um ,   τ = 0 ,   y = δ ;   U = U0 ,   
∂τ
∂y

 = 0 ,   τ = 0 ,   y = R . (18)

They correspond to the polynomial

U − U0 = (Um − U0) (1 − 6η2 + 8η3 − 3η4) ,  η = 
y − δ
R − δ

 . (19)

As is seen, the velocity distribution in the flow core coincides with the distribution in free jets [12].

NOTATION

x, longitudinal coordinate; y, distance reckoned from the wall to the normal; ξ and η, dimensionless
coordinates; δ, thickness of the viscous boundary layer; R, tube radius; U, velocity of the averaged flow;
U0m, amplitude of velocity oscillations on the tube axis; U0, velocity on the tube axis; Um, maximum veloc-
ity; v, transverse component of the velocity; u′, v′, and w′, pulsating components of the velocity; v∗  =
√ τw

 ⁄ ρ , rate of tangential stress; v0
∗  = √ τw0

 ⁄ ρ , amplitude of the rate of tangential stress; ω, cyclic frequency
of oscillations; t, time; φ, initial phase; ν, kinematic viscosity; νt, eddy viscosity; τ, tangential stress; τw, tan-
gential stress on the wall; τw0, amplitude of tangential stress on the wall; p, pressure; ρ, density of the liquid;
ρ0, density of the gas; E, kinetic energy of turbulence; P, generation of turbulence energy; [εt], turbulent part

Fig. 3. Coefficient A vs. time: 1) theory; 2) experiment [6].
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of dissipation, brackets denote averaging over the channel cross section; A = 1 ⁄ κ, parameter obeying the uni-
versal law, κ = 0.4 is the von Ka′rma′n constant; Aexp, experimental value of the parameter obeying the loga-
rithmic law; Atheor, theoretical value of the parameter for the logarithmic law; B = 1.5, constant determined
from the profile of comparison; B1, constant.
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